Doubly Robust Policy Evaluation and Learning
نویسندگان
چکیده
We study decision making in environments where the reward is only partially observed, but can be modeled as a function of an action and an observed context. This setting, known as contextual bandits, encompasses a wide variety of applications including health-care policy and Internet advertising. A central task is evaluation of a new policy given historic data consisting of contexts, actions and received rewards. The key challenge is that the past data typically does not faithfully represent proportions of actions taken by a new policy. Previous approaches rely either on models of rewards or models of the past policy. The former are plagued by a large bias whereas the latter have a large variance. In this work, we leverage the strength and overcome the weaknesses of the two approaches by applying the doubly robust technique to the problems of policy evaluation and optimization. We prove that this approach yields accurate value estimates when we have either a good (but not necessarily consistent) model of rewards or a good (but not necessarily consistent) model of past policy. Extensive empirical comparison demonstrates that the doubly robust approach uniformly improves over existing techniques, achieving both lower variance in value estimation and better policies. As such, we expect the doubly robust approach to become common practice.
منابع مشابه
More Robust Doubly Robust Off-policy Evaluation
We study the problem of off-policy evaluation (OPE) in reinforcement learning (RL), where the goal is to estimate the performance of a policy from the data generated by another policy(ies). In particular, we focus on the doubly robust (DR) estimators that consist of an importance sampling (IS) component and a performance model, and utilize the low (or zero) bias of IS and low variance of the mo...
متن کاملDoubly Robust Off-policy Value Evaluation for Reinforcement Learning
We study the problem of off-policy value evaluation in reinforcement learning (RL), where one aims to estimate the value of a new policy based on data collected by a different policy. This problem is often a critical step when applying RL to real-world problems. Despite its importance, existing general methods either have uncontrolled bias or suffer high variance. In this work, we extend the do...
متن کاملDoubly Robust Policy Evaluation and Optimization
We study sequential decision making in environments where rewards are only partially observed, but can be modeled as a function of observed contexts and the chosen action by the decision maker. This setting, known as contextual bandits, encompasses a wide variety of applications such as health care, content recommendation and Internet advertising. A central task is evaluation of a new policy gi...
متن کاملDoubly Robust Off-policy Evaluation for Reinforcement Learning
We study the problem of evaluating a policy that is different from the one that generates data. Such a problem, known as off-policy evaluation in reinforcement learning (RL), is encountered whenever one wants to estimate the value of a new solution, based on historical data, before actually deploying it in the real system, which is a critical step of applying RL in most real-world applications....
متن کاملSample-efficient Nonstationary Policy Evaluation for Contextual Bandits
We present and prove properties of a new offline policy evaluator for an exploration learning setting which is superior to previous evaluators. In particular, it simultaneously and correctly incorporates techniques from importance weighting, doubly robust evaluation, and nonstationary policy evaluation approaches. In addition, our approach allows generating longer histories by careful control o...
متن کامل